
Coordinated Deployment of Multiple, Heterogeneous Robots

Reid Simmons1, David Apfelbaum1, Dieter Fox1, Robert P. Goldman2,
Karen Zita Haigh2, David J. Musliner2, Michael Pelican2, Sebastian Thrun1

1School of Computer Science 2Honeywell Technology Center
Carnegie Mellon University 3660 Technology Drive

Pittsburgh PA 15213 Minneapolis MN 55418

Abstract

To be truly useful, mobile robots need to be fairly
autonomous and easy to control. This is especially true in
situations where multiple robots are used, due to the
increase in sensory information and the fact that the robots
can interfere with one another. This paper describes a
system that integrates autonomous navigation, a task
executive, task planning, and an intuitive graphical user
interface to control multiple, heterogeneous robots. We
have demonstrated a prototype system that plans and
coordinates the deployment of teams of robots. Testing has
shown the effectiveness and robustness of the system, and
of the coordination strategies in particular.

1 Introduction

Mobile robots are being used increasingly in safety-critical
applications, such as waste cleanup, space, and the military.
Due to the sensitive nature of such domains, human
guidance is important to ensure that the robots are attending
to the right set of goals. On the other hand, humans may not
want, or be able, to exercise detailed control over the
robots. This is especially true in situations where multiple
robots need to be controlled and in situations, such as
military operations, where the human operators themselves
are under stress. In such situations, robots must be highly
flexible, autonomous assets that can carry out complex
tasks with only minimal command effort from humans.

This paper describes an implemented, integrated system
that enables a single user to easily control and coordinate
multiple robots. The architecture (Figure 1) follows the
now-common tiered approach to autonomous systems (cf.
3T [4]). In particular, in our architecture the top layer is a
task planner, connected to a graphical user interface (GUI),
that supports a “playbook” style control strategy, the
middle layer is a task-level executive that flexibly
coordinates heterogeneous robots, and the bottom layer,
replicated on each robot, performs reliable autonomous
navigation using probabilistic representations. This paper
describes how the system is used to coordinate the
deployment of heterogeneous robots into a previously-
mapped area. In [5] and [19], we describe how the same
basic system is used to coordinate multiple robots in
exploring and mapping previously unknown areas.

This work is being carried out under the Tactical Mobile
Robot (TMR) program, sponsored by DARPA. The goal of
the TMR program is to enable war fighters to easily deploy
and control teams of small, portable robots in urban
settings. Such robots can be used to explore buildings,
guard locations, establish communication networks,
provide distractions, assist the injured, etc. To avoid
interfering with normal military operations, the robots must
be fairly autonomous, reliable, and easy to control.

Key aspects of the work presented here include:
• The graphical user interface is designed around the

notion of a “playbook” , in which a user commands the
robots using a small set of intuitive, parameterized
strategies. This project demonstrated the playbook
concept and validated the ability to rapidly task teams
of robots with minimal user input.

• The MACBeth planner accurately decomposes high-
level user intentions into executable robot executive
programs. MACBeth is able to communicate tasks to
the executive at multiple levels of abstraction.

• The executive uses a high-level task description
language to represent the coordination strategies of the
robots. In particular, we show how the language
enables qualitatively different methods of deployment
to be specified with only minor changes in syntax.

• The navigation system uses probabilistic
representations to reliably track and guide the robots.
The same system works on several different platforms,
with different sensor and actuator configurations.

Figure 1: Tiered Architecture for Autonomous Robots

Navigation/
Behavioral

Navigation/
Behavioral

Navigation/
Behavioral

Executive

Planner/
GUI

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Coordinated Deployment of Multiple, Heterogeneous Robots

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Department of Computer Science
,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To be truly useful, mobile robots need to be fairly autonomous and easy to control. This is especially true in
situations where multiple robots are used, due to the increase in sensory information and the fact that the
robots can interfere with one another. This paper describes a system that integrates autonomous
navigation, a task executive, task planning, and an intuitive graphical user interface to control multiple,
heterogeneous robots. We have demonstrated a prototype system that plans and coordinates the
deployment of teams of robots. Testing has shown the effectiveness and robustness of the system, and of the
coordination strategies in particular.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The next section describes in more detail the scenario that
motivates our work. Section 3 presents related work in
multi-robot deployment and coordination. Sections 4, 5
and 6 present the planner/GUI, executive, and navigation
layer, respectively. Section 7 describes some of our
experience with the multi-robot deployment system, and
Section 8 offers conclusions.

2 Scenario

The scenario here is the coordinated deployment of robots
in a previously-mapped environment. For example, several
robots might have been tasked with exploring an area to
make a map [19] and then return to “base”. After that, a
larger team of robots might be deployed to strategic
positions in the building, for instance to provide line-of-
sight communications, or to monitor for intruders.

We want users to have to specify only the deployment
locations and a general strategy for the deployment, and to
have the software system determine which robots go where
(based on their different capabilities) and how to navigate
to the locations in a coordinated way. The deployment
strategies differ in the order and degree of concurrency
used in moving the robots. Each deployment strategy is a
type of set “play” , parameterized by the number and end
locations of each robot.

We have investigated three different deployment strategies.
The group deployment has all the robots move
concurrently to the closest chosen location, then one stays
behind and the rest move to the second closest location,
etc., until the last robot travels (alone) to the last location.
In contrast, the wave deployment strategy uses the notion
of a “point man” -- one robot goes to the first location and,
when it arrives, the second robot travels to the first position
while the first (“point man”) robot moves on to the second
location. The robots continue to deploy in a wave-like
manner until the first robot reaches the final location, at
which point the last robot has also arrived at the first
location. In the leap-frog deployment, a “point man” robot
travels to the first location, then a second robot travels past
the first robot to the second location, with each subsequent
robot traveling past all the previously deployed robots to
get to the next location.

Issues in this scenario include planning out which robots
should go where, coordinating their interactions to
implement the desired deployment strategies, getting the
robots to navigate reliably, and minimizing human
involvement in all this. After presenting related work, we
describe our approaches to these problems.

3 Related Work

While there has been much prior work in multi-robot
cooperation, we focus here on a few relevant pieces of
work. Several authors have investigated multi-robot
formations, mostly concentrating on the behavioral aspects
of maintaining formation, rather than the sequential aspects
of deployment that is the focus of this paper. Balch and
Arkin [2] developed behaviors to maintain different types
of formations (line, wedge, etc.) under different conditions
(leader-centered, unit-centered, etc.). They showed how
the behaviors were able to reliably maintain formation and
smoothly switch between formations. While they did not
address planning or explicit robot synchronization, their
methods could be combined with our own, at the
behavioral level. Other authors [6, 21] have looked at
formation maintenance in a control-theoretic framework,
especially with regards to the stability of formations in
situations with only limited inter-robot communication.
Parker [15], in her ALLIANCE architecture, is also able to
handle formation maintenance, among other multi-robot
tasks. While still not employing explicit coordination, the
robots use the concepts of “motivation” and “ impatience”
to effectively cooperate, and to do so in a fault-tolerant
manner.

Jennings et. al. [12] have developed a distributed executive
for multi-robot coordination. The executive, based on a
distributed dialect of Scheme, is similar to our executive
language in the types of explicit synchronization
constraints it supports. One difference with our work is that
Jennings’ executive is not integrated with a planner.
Another difference is that his executive is truly distributed
amongst the robots. This is something that we are currently
implementing for our executive language.

Alami et. al. [1] present a general methodology for
distributed planning and plan execution. This contrasts
with our approach in which the planning is centralized.
They describe methods for incrementally merging plans in
a distributed fashion. Like our (and Jennings) work,
temporal constraints are used to coordinate activities, and
these constraints enable tasks to be invoked automatically
on one robot when another robot finishes a task. An
interesting aspect of the work is that the plan merging
activities may themselves be scheduled and coordinated.

4 The Playbook GUI and MACBeth Planner

In our work, multi-robot deployment is commanded using
a prototype playbook GUI [13], which provides a high-
level command and control interface requiring minimal
human attention. The concept is derived from sports
playbooks, where each player knows the broad outline of a
“play,” and each play has been well-practiced by the team.
During an actual game, the play is “ tailored” by a coach or

team captain to meet the conditions on the field. Similarly,
the playbook interface provides easy access to a set of pre-
defined mission profiles (deployment maneuvers), along
with tailoring functions that allow the user (a soldier) to
quickly and easily customize the deployment for a
particular scenario.

Figure 2 shows a sample of the playbook GUI for the robot
deployment task. The GUI is written in Java to operate in a
web browser. In the upper left corner, the GUI displays the
list of available plays, organized in a browser metaphor.
The user can select and execute plays at any level of the
browser structure, thus providing more- or less-detailed
commands to the robot team. In the lower left corner, the
GUI shows status information for a selected robot. The
right hand side displays the map, the home base (triangle),
the robots’ current locations (fil led circles), and the robots’
goal locations (clear circles). After the user selects a play,
he can choose either Execute, and the MACBeth planner
will generate a plan and send it to the executive, or Tailor,
and MACBeth will generate a (constraint-free) plan, and
then allow the user to set constraints and otherwise tailor
the play to the current situation.

To support the playbook commanding metaphor and allow
the user to command at various levels of abstraction, the
GUI interacts with the MACBeth planner to build complete
robot team plans. MACBeth is a constraint-based tactical
planning engine for multi-agent teams. MACBeth is
designed for domains in which a human user must quickly
specify a mission to a team of autonomous agents. In these
domains, “puzzle-mode” thinking to come up with novel
plans is not important; the key task is to rapidly and
accurately tailor existing plans to novel situations. To this
end, MACBeth combines hierarchical task network (HTN)
planning and modern constraint reasoning techniques in a
mixed-initiative planning system. The playbook GUI uses
MACBeth to generate, check, and modify team plans.

In this paradigm, “calling a play” means that the user
declares that a certain task needs to be accomplished. The
user can “ tailor” the play by setting parameters and adding
constraints specified by operating conditions. Tailoring a
play essentially allows for adjustable autonomy on the
robots: The user can command the robot team at different
levels of detail, leaving unspecified details up to the
judgment of the autonomous systems, when desired. For
the TMR task, the target user is a soldier squad leader or
robot operator within a squad. The plays contain internal
timing constraints, and certain actions (e.g., take a photo)
have related hardware requirements. Most remaining
constraints are map- or environment-related, including
navigation waypoints and goal locations (specified by the
user) and required locomotion capabilities (specified by the
route planner in the navigation layer).

In tactical applications, the mission planning system must
ensure that plans are feasible. If the user attempts to
specify an infeasible plan, conflicts and inconsistencies
should flagged by the planning algorithm as soon as
possible, so that the user can retract choices or reconcile
conflicting objectives early in the planning process. For
example, a user might request a team of robots to map an
area that is too large for them to cover in the required time.
The planner should identify the inconsistency quickly,
ideally before it expends planning effort on low-level
details, and immediately alert the user, so that he may either
modify his objectives or assign additional resources.

The combination of HTN planning, constraint
programming, and playbook GUI was chosen to meet these
needs. Hierarchical task nets provide a representation for
plans that is relatively easy for people to understand. They
can also support very efficient planning, when the ability to
construct novel plans (completeness) is less of interest. The
HTN plans provide a skeleton on which to perform
constraint reasoning, and form a very natural interface to
the executive (see Section 5).

Constraints on MACBeth’s plans capture the complex
relationships between (otherwise unrelated) tasks, allowing
MACBeth to reason about the tradeoffs of different
resource allocations. MACBeth’s constraint handling also
assists human planners in resource management and in
appropriately assigning mission roles to team members.
Thus, users do not have to reason about which agent does
which task, or how to reallocate agents in order to achieve
mission goals.

Constraints also provide a clean interface to external
knowledge sources. For instance, in this application the
navigation layer provides route planning information based
on a metric map. The route planner is interfaced to
MACBeth via constraints: MACBeth does not understand
the geometric character of routes, so the route planner gives
it summary information in the form of constraints, such as

Figure 2: Playbook GUI for TMR Deployment Domain

the time the route is expected to take and the length of the
route. MACBeth uses this information to make decisions
about which routes to take. For example, the user may task
two robots to deploy to two different locations, but not
specify which robot goes to which location. In this
situation, MACBeth fills in these missing details by
querying the route planner for routes for each robot to each
destination, and then chooses the lowest-cost robot-to-
destination assignment according to the constraints
calculated by the route planner.

5 Executive

The executive dispatches tasks and coordinates the
multiple robots. It acts as a bridge between the high-level
symbolic task planner and the lower-level navigation layer.
When the user chooses to execute a play, MACBeth sends
the hierarchical task net to the executive using the generic
Plan Representation Language. PRL defines each task in
terms of parameters, subtasks, and temporal constraints
between subtasks.

MACBeth transmits the complete hierarchy, rather than
just the leaf tasks, for several reasons. First, if the executive
knows the hierarchical relationships between tasks, it can
more flexibly report on status and can terminate complete
subtrees with a single command. Second, as described
below, some tasks must be augmented to cope with
interference and other aspects of the real world that the
planner does not model. Thus, the executive potentially
needs to know about all the tasks in the hierarchy. Third,
this allows for a flexible boundary between planner and
executive. The planner can decide to plan some tasks at a
high level of abstraction and to expand some to a lower
level, while relying on the executive to fil l in the details.

The primary role of the executive is to execute plans
according to the constraints imposed by the planner. The
executive keeps track of the synchronization constraints
between tasks and dispatches tasks when the constraints are
satisfied. The executive is implemented using the Task
Description Language [18]. TDL is an extension of C++
that contains explicit syntax to support task decomposition,
task synchronization, execution monitoring, and exception
handling. The TDL compiler transforms TDL programs
into pure C++ code, plus calls to a general-purpose task
management library. The transformed programs can then
be compiled and linked with a normal C++ compiler.

One feature of TDL is the expressive constructs it supports
for specifying temporal constraints between tasks,
including both qualitative and quantitative relationships
between the start and end points of tasks. For instance, a
TDL task can be constrained to precede another (meaning
that it, and all of its subtasks, must complete before the
other task, or any of its subtasks, can start), or a task can be

constrained to start 10 seconds after another, or a task can
be constrained to terminate whenever another task
completes. While TDL was originally developed to support
coordination amongst multiple behaviors on a single robot,
we have found it to be very useful for synchronizing the
tasks of multiple robots, as well. We are currently working
to distribute TDL so that each robot can have its own
executive that transparently coordinates with the other
executives.

Both MACBeth and the executive view multi-robot
deployment as having the same basic form: For N “ stages”
(where N is the number of robots, which equals the number
of locations), move some group of n robots to some set of
m locations. To a first approximation, the various
deployment strategies differ with respect to the number of
robots moving per stage, and the order in which they move.
For example, Figure 3 shows TDL code (simplified for
clarity) for the three deployment strategies that we have
implemented (see Section 2). “deployList” is an N-element
array, where the i th element of the array indicates which
robot is to end up in which location. In all the deployment
strategies, no matter how the robots move initially, they all
must end up in the locations specified by the “deployList” .

Group deployment is distinguished by the fact that the
number of robots moving decreases over time, starting with
N and ending with one. In contrast, the number of moving
robots increases in the wave deployment. In the third
approach, leap-frog deployment, the number of robots
moving is constant (one).

The deployment strategies in Figure 3 essentially treat each
robot as a point object, ignoring potential interference from
other robots. For instance, the group deployment strategy
has robots moving to the same location. In the real world,
we need to take account of potential interference caused by
robots with volume and mass. While the local obstacle
avoidance behaviors of the navigation layer ensure that the
robots do not crash into each other, the emergent behavior
may not be very efficient.

To remedy this, we augment each of the basic deployment
strategies with coordination behaviors that act to reduce
interference. Interference in the group deployment strategy
comes from two sources. First, in each stage the strategy is
supposed to deploy a group of robots to a given location.
Since real robots cannot occupy the same space, the
executive actually tasks them with slightly different
destinations. The robot that is supposed to end up at that
location is sent directly to the location specified in the
“deployList” . The other robots are deployed along a line
between that location and the next goal location, separated
by a fixed distance. The other type of interference is that
the robots move concurrently, starting from the same
general location. To minimize the likelihood that they have
to avoid one another, we stagger the robots. Each robot

monitors the position of the next robot in the “deployList”
and does not start moving until that robot is a given
distance ahead of it. This combination of coordination
strategies keeps the team of robots well disciplined (see
Figure 5).

Interference in the leap-frog deployment strategy occurs
when one robot moves past other robots on its way to a goal
location. This is exacerbated because we typically operate
in narrow corridors. To minimize such interference, the
already-deployed robots monitor the position of the
moving robot. When it starts approaching, the robots move
away (roughly perpendicular to the route of the moving
robot), wait until the robot has passed, then move back into
position. In this way, the designated deployment locations

are left unoccupied for a minimal period of time. For the
wave deployment strategy, there is no robot-robot
interference, so no augmentation is necessary.

One additional role of the executive is to send MACBeth
and the GUI dynamic state information. After each task
completes (or if it fails), the executive sends a status
message back to the planner and GUI. It also monitors, and
periodically transmits, the position and status of each robot.
The GUI can synchronously request map information,
which is used to display where the robots are, and the
planner can request route information between arbitrary
locations, which it uses to decide how to deploy the robots.
Finally, the GUI can request camera images from particular
robots, to give the user a robot-eye-view of the situation.

6 Navigation

Our robots employ a probabilistic system for navigation
and localization. At the beginning of the coordinated
deployment, we assume that a map of the environment is
readily available, such as the one shown in Figure 4. Maps
like these are easily built using the software approach
described in [20], which extends Elfes’ and Moravec’s
occupancy grid mapping algorithm [8, 14] by a real-time
method for concurrent localization. The map shown in
Figure 4 was acquired by a single robot; the issue of multi-
robot coordination during mapping is beyond the scope of
this paper and approaches can be found in [5, 19].

Equipped with such an occupancy grid map, the navigation
task can be decomposed into three components:
localization, motion planning, and collision avoidance.
Such a decomposition is a de-facto standard in mobile
robotics: Localization is a pure observer, estimating robot
position based on sensor data, without impacting the way
the robot behaves. The control problem is decomposed into
two components: The motion planner generates globally
near-optimal paths, and the collision avoidance algorithm
is responsible for generating motor commands that meet
the dynamical constraints imposed by the physical robot.

In brief, our localization module implements the Monte
Carlo localization (MCL) algorithm [7], a Bayesian
solution for the localization problem. This algorithm
estimates a robot’s position, denoted x, as a posterior, using
the following recursive estimator:

Here y is the most recent sensor measurement and u is the
controls (or, alternatively, a differential odometry reading).
The conditional probabilities are easily modeled using
simple mixture models, as described in [10].

The MCL algorithm implements this equation using a
particle filter [16], which generates a set of (weighted)
random particles that, as a whole, represent the desired

Figure 3: Deployment Strategies in TDL (Simplified)

Goal GroupDeploy (DEPLOY_PTR deployList)
{

with (serial) {
for (int i=0; i<length(deployList); i++) {

spawn GroupDeploySub(i, deployList);
} } }

Goal GroupDeploySub (int phase, DEPLOY_PTR deployList)
{

with (parallel) {
for (int j=phase; j<length(deployList); j++) {

spawn Deploy(deployList[j].robot,
deployList[phase].location);

} } }

Goal WaveDeploy (DEPLOY_PTR deployList)
{

with (serial) {
for (int i=0; i<length(deployList); i++) {

spawn WaveDeploySub(i, deployList);
} } }

Goal WaveDeploySub (int phase, DEPLOY_PTR deployList)
{

with (parallel) {
for (int j=0, k=length(deployList)-1; j<=phase; j++) {

spawn Deploy(deployList[k-phase+j].robot,
deployList[j].location);

} } }

Goal LeapFrogDeploy (DEPLOY_PTR deployList)
{

with (serial) {
for (int i=0; i<length(deployList); i++) {

spawn LeapDeploySub(i, deployList);
} } }

Goal LeapDeploySub (int phase, DEPLOY_PTR deployList)
{

with (serial) {
for (int j=0; j<=phase; j++) {

spawn Deploy(deployList[phase].robot,
deployList[j].location);

} } }

Bel x() P y x() P x u x′,()Bel dx′()∑=

posterior Bel(x). The basic algorithm is very
straightforward:

• Generate a set of random x’ from Bel(x’).
• For each x’ , guess x according to P(x | u, x’).
• Weight each x numerically by P(y | x). These weights

are taken into account in the next iteration.
As argued in [7], this algorithm is extremely efficient,
robust, and accurate.

The path planner uses value iteration [3], a version of
dynamic programming, to determine the shortest path to
the goal. Value iteration computes the distance to a goal
point from arbitrary starting locations, hence is capable of
recovering from unanticipated motions generated by the
collision avoidance module. For computational reasons,
our approach considers two dimensions only, ignoring
important factors such as inertia, torque limits, and
obstacles (such as people) not present in the map.

Those other factors are taken into account by DWA, the
collision avoidance algorithm [9]. DWA computes motor
commands from the motion plans and a set of hard and soft
constraints. Hard constraints are necessary to ensure the
safety of the robot and its environment. They make the
robot avoid configurations that inevitably would lead to a
collision. For example, hard constraints force the robot to
decelerate when approaching an obstacle, so that a safe
stop can be guaranteed at all times. Soft constraints express
preferences in control space. Currently, DWA combines
three soft constraints: the desire to move towards a goal
location (as set forth by the motion planner), the desire to
move fast, and the desire to stay clear of obstacles.
Together, these three soft constraints lead to smooth and
effective behavior.

Under the name of BeeSoft, this navigation system has
been distributed by RWI Inc., a major robot manufacturer,
and is now in widespread use in academic institutions
world-wide. It has been ported to a large number of mobile
robot platforms, including Pioneer I and II (by
ActivMedia), ISR Pioneer AT, B14, B18, B21, Nomad
Scout, Superscout, and XR 4000, and also was at the core
of two museum tour-guide robots.

7 Experience

The multi-robot deployment scenario was tested in several
locations, including a remote TMR demonstration. Most of
our testing was done in the corridors of our building at
Carnegie Mellon (Figures 4 and 5). A typical scenario used
four robots: Robin and Marion, two Pioneer AT’s modified
to hold a SICK laser range finder, Amelia, an RWI B21
with a SICK laser, and Xavier, an RWI B24 that used only
sonar sensors. Robin, Marion and Amelia all use the
BeeSoft navigation package described in Section 6. Since
Xavier uses a somewhat different system [17], we added a
layer that translates executive commands into Xavier’s
formats. However, the executive still has to explicitly deal
with the fact that some robots have different map
representations, different sensors, and that some do not
have cameras.

A typical scenario was to have all four robots execute one
group deployment stage to take them from the “base” (our
lab, labeled A in Figure 4) to the intersection labeled B.
Then, two robots would leap-frog deploy to locations C
and D, and the other two would concurrently group deploy
to E and F. The whole deployment would take about 3-4
minutes, and the robots would average about 50 meters of
travel. After deployment, the robots executed a set play to
return to base (in a concurrent, but uncoordinated, fashion).

One problem with this scenario is that the first leap-
frogging robot could conceivably interfere with the two
robots performing the group deployment. While we could
have augmented the plan to explicitly coordinate these
robots, it was far easier (and nearly as robust) just to make
sure they were ordered appropriately after the first group
deployment (in particular, the leap-frogging robot should
be ahead of the others).

Figure 4: Learned Map of Part of Wean Hall at CMU

A B

C

F

E

D

Figure 5: Coordinated Deployment of
Robin, Marion, Amelia and Xavier

Our testing indicates that the coordinated strategies were
effective and efficient. By the end of our testing, the
strategies were also quite robust. This was mainly due to
the explicit coordination behaviors (described in Section 5)
that were added to alleviate possible interference between
robots.

8 Conclusions

To be useful in many applications, mobile robots need to be
fairly autonomous and easy to control. This is even more
important for teams of robots, especially in situations
where the robots can potentially interfere with one another.
This paper has described an integrated multi-robot system
that (1) uses an intuitive “playbook” interface to simplify
user control and understanding, (2) plans complex tasks
scenarios, (3) uses explicit synchronization techniques to
coordinate and monitor the behaviors of multiple,
heterogeneous robots, and (4) uses probabilistic techniques
to reliably and efficiently navigate the robots.

The system has been tested in the area of deployment of
teams of robots. Qualitatively different deployments were
developed based on small syntactic changes to a basic
underlying strategy of deploying N robots to N locations in
N separate stages. This not only facilitates development, it
also made it easier for users to switch strategies
dynamically. Subsequent work has extended the system to
multi-robot mapping and exploration [5, 19] and a similar
system is being developed for multi-robot assembly and
construction [11].

Acknowledgments

Thanks to Greg Armstrong for maintaining all the robots
and assisting with the experiments. This work is sponsored
in part by DARPA via TACOM contract DAAE07-98-C-
L032.

References

[1] R. Alami, F. Ingrand, S. Qutub. “A Scheme for Coordinating
Multi-robot Planning Activities and Plans Execution.” In
Proceedings of European Conference on Artificial Intelli-
gence, Brighton UK, 1998.

[2] T. Balch and R.C. Arkin. “Behavior-based Formation Control
for Multi-robot Teams.” IEEE Transactions on Robotics and
Automation, 14(6), 1998.

[3] A.G. Barto, S.J. Bradtke, S. P. Singh. “Learning to Act using
Real-Time Dynamic Programming.” Artificial Intelligence,
72, pp. 81-138, 1995.

[4] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp , D. Miller
and M. Slack. “A Proven Three-tiered Architecture for Pro-
gramming Autonomous Robots.” Journal of Experimental
and Theoretical Artificial Intelligence, 9(2), 1997.

[5] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun,.
“Collaborative Multi-Robot Exploration.” In Proceedings of

the IEEE International Conference on Robotics and Automa-
tion, San Francisco CA, April 2000.

[6] Q. Chen and J.Y.S. Luh. “Coordination and Control of a
Group of Small Mobile Robots.” In Proceedings of the IEEE
International Conference on Robotics and Automation, pp.
2315-2320, San Diego CA, 1994.

[7] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. “Monte Carlo
Localization For Mobile Robots.” In Proceedings of the IEEE
International Conference on Robotics and Automation, 1999.

[8] A. Elfes. “Occupancy Grids: A Probabilistic Framework for
Robot Perception and Navigation.” PhD Thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon
University, 1989.

[9] D. Fox, W. Burgard, S. Thrun. “The Dynamic Window
Approach to Collision Avoidance.” IEEE Robotics and Auto-
mation, 4(1), 1997.

[10] D. Fox, W. Burgard, and S. Thrun. “Markov Localization for
Mobile Robots in Dynamic Environments.” Journal of Arti-
ficial Intelligence Research, 11, pp. 391-427, 1999.

[11] D. Hershberger, R. Burridge, D. Kortenkamp and R. Sim-
mons, “Distributed Visual Servoing with a Roving Eye.” In
Proceedings of Conference on Intelligent Robotics and Sys-
tems (this volume), Takamatsu Japan, 2000.

[12] J.J. Jennings, G. Whelan, W.F. Evans. “Cooperative Search
and Rescue with a Team of Mobile Robots.” 1996.

[13] C. Miller and R. P. Goldman. “ ‘Tasking’ Interfaces: Associ-
ates that Know Who’s the Boss. In Proceedings of the Fourth
Human Electronic Crew Conference, Kreuth, Germany, Sep-
tember 1997.

[14] H.P. Moravec. “Sensor Fusion in Certainty Grids for Mobile
Robots.” AI Magazine, pp. 61-74, Summer 1988.

[15] L. Parker. “Heterogeneous Multi-Robot Cooperation.” PhD
Thesis, Dept. of Electrical Engineering and Computer Sci-
ence, M.I.T., 1994.

[16] M. Pitt, and N. Shephard. “Filtering via Simulation: Auxil-
iary Particle Filter.” Journal of the American Statistical Association,
1999.

[17] R. Simmons, R. Goodwin, K. Zita Haigh, S. Koenig. and J.
O’Sullivan. “A Layered Architecture for Office Delivery
Robots.” In Proceedings of First International Conference on
Autonomous Agents, Marina del Rey, CA, February 1997.

[18] R. Simmons and D. Apfelbaum. “A Task Description Lan-
guage for Robot Control.” In Proceedings of Conference on
Intelligent Robotics and Systems, Vancouver Canada, 1998.

[19] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors,
S. Thrun and H. Younes. “Coordination for Multi-Robot
Exploration and Mapping.” In Proceedings of the National
Conference on Artificial Intelligence, Austin TX, August
2000.

[20] S. Thrun, W. Burgard, and D. Fox. “A Real-Time Algorithm
for Mobile Robot Mapping With Applications to Multi-Robot
and 3D Mapping.” In Proceedings of the IEEE International
Conference on Robotics and Automation, San Francisco CA,
April 2000.

[21] P.K.C. Wang. “Navigation Strategies for Multiple Autono-
mous Robots Moving in Formation.” Journal of Robotic Sys-
tems, 8(2), pp. 177-195, 1991.

